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The implementation of multi-reference-state Rayleigh-Schr6dinger perturba- 
tion theory for 1the evaluation of potential-energy surfaces is reviewed. The 
organization of the computation and the basic algorithms are outlined. A 
major difficulty is the quadratic increase in computing sources as the reference 
space is expanded. Truncating the space of nonreference determinants is 
suggested as a solution for the problem. The method applies a numerical 
cutoff criterion for the weights of the first-order wave function. The truncation 
reduces the computing time significantly with negligible sacrifice in the quality 
of the results. 
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1. Introduction 

A reliable method for computing accurate potential-energy surfaces (PES) of 
molecules, should in principle be able to track the variations in both configuration 
mixing and the ele, ctronic correlation energy as a function of the molecular 
geometry. Basically, all methods of electronic structure theory provide a set of 
systematic approximations to the exact solution. A practical PES method should 
reach the desired accuracy at rather low level of approximation without destroying 
the overall shape; that is, giving comparable accuracies at different geometries. 

Perturbation-theory methods, e.g. the Rayleigh-Schr6dinger (RS) series [1, 2] or 
coupled-cluster expansions [3,4], are due to the linked-cluster theorem 

* This paper was presented at the international conference on "The Impact of Supercomputers on 
Chemistry", held at the University of London, London, UK, 13-16 April 1987 
** Present address: IFF der Kernforschungsanlage, D-5170 J/ilich, Federal Republic of Germany 



304 G. Hose 

conceptually suitable for the purpose of computing PES. The linked-cluster theorem 
ensures that in every order, the terms entering the final perturbation expansion 
are all legal contributions appearing also in the infinite-order energy expression. 
In other words, even if topologically spurious terms are hidden in the perturbative 
formulae, they all mutually cancel at every order of the perturbation. The order-by- 
order perturbation results form therefore successive' approximations to the energy. 

By way of contrast, the importance of accumulating just the legitimate terms of 
the final energy expresion, is emphasized in variational methods like configuration 
interaction (CI) [5]. Here every approximation amounts to a partial infinite-order 
summation of the perturbation expansion, and as such it may include also spurious 
terms. For example, a CI expansion spanning only the single and double excita- 
tions out from some reference determinant (SDCI), gives an energy expression 
containing terms that cancel out when triples and quadruples are introduced 
[6, 7]. This accumulation of spurious terms is commonly referred to as the 
size-consistency error. It poses a serious problem for PES evaluation because the 
magnitude of spurious terms usually varies with the spatial configuration of the 
nuclei. To offset for this error the SDCI result is corrected by a perturbative 
estimate for the contribution of the illegal (unlinked) terms; the so called Davidson 
correction [6]. 

All stationary perturbation theories may be formulated beginning from a partition- 
ing of Hilbert space into a small set of reference functions of interest (the reference 
space) and its orthogonal complement [8]. An effective Hamiltonian (Hem) is 
then defined over the reference space under the requirement that its spectrum 
intersects with that of the original Hamiltonian. The elements of the matrix of 
He~ are expandable as power series in the perturbation which is the difference 
operator between the exact and the zeroth-order Hamiltonian defining the basis. 
An order-by-order truncation of the perturbation series for He~ gives a sequence 
of model effective Hamiltonians whose spectra constitute (if convergent) a set 
of systematic approximations to some eigenvalues of the exact Hamiltonian. 

In the usual formulation of perturbation theory the reference space is never 
specifically defined. In fact, it is a free parameter of the theory; presumably the 
only one. It is clear that if the reference space poorly describes states of the 
perturbed Hamiltonian, then the perturbation expansion is for certain divergent 
[2, 9]. For example, think of a near-degeneracy situation of two configurations 
with just one of them defined as the reference space. By the same token, it is 
conceivable that varying the reference space (i.e. expanding it) may significantly 
improve the convergence of the perturbation expansion [9]. This improvement 
is directly related to the ability of the reference space to describe the wave 
functions in question. A quantitative measure of such a description is the weight 
of the reference space in the wave functions. The larger the weight, the better 
the convergence should be. Expanding the reference space will always increase 
the weight. Hence, this is a method of obtaining systematic approximations to 
the energy, in addition to the order-by-order truncation of the series. 
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The reference space is a degree of freedom of perturbaton theory which is 
necessary for PES calculations because of configuration mixing. It is the rule 
rather than the exce, ption, that over a wide range of molecular geometries, the 
electronic wave function consists of  a number  of major configurations. This may 
be due to near-degeneracy effects as in forbidden curve crossing, or to improper  
description of dissociation by the zeroth-order functions, or simply to the influence 
of strong electronic: correlations. A multi-reference-state (MRS) perturbation 
formalism which allows for configuration mixing and is also naturally size 
consistent, is therefore particularly suitable for the calculation of PES. 

An extended reference space may prove quite costly in computing sources which 
increase quadratically with the number of  reference states. It is crucial therefore 
that efficient computational  procedures are employed. In this article we shall 
discuss how to organize an MRS perturbation calculation to third order. Means 
to increase efficiency are suggested. One is parallel processing which may be 
easily incorporated in the perturbation calculation. Another is trimming the" 
orthogonal complement  of  the reference space. This method is frequently 
employed in MRS SDCI [10]. Here the discarded configurations are those which 
are unimportant  (according to a numerical criterion for the weight) in the 
first-order RS wave function. This truncation has no significant effect on the 
third-order result but largely diminishes the computer sources needed. Trial 
calculations on Li2 support  this statement. 

2. The multi-reference-state perturbation calculation 

Let H ~ be the mean-field (e.g. Hartree-Fock)  model Hamiltonian for a molecular 
system with the electronic Hamiltonian H at a specified geometry. The eigenvec- 
tors of  H ~ are Slater determinants constructed from orbitals satisfying the mean- 
field equations. The zeroth-order energy associated with each determinant is a 
sum of its orbital energies. All these quantities are assumed known, and so is the 
matrix of  the perturbation V = H -  H ~ in the basis of  Slater determinants. An 
element in this matrix is a linear combination of two-electron integrals between 
orbitals. 

A small set p of determinants is chosen as the reference space. P is the projection 
operator onto the reference space and Q = 1 - P  projects onto q, the orthogonal 
complement  ofp. The determinants spanning the q-space are calssified as interact- 
ing or noninteracting with the reference space. The former group includes all the 
q-determinants that have a nonvanishing perturbation matrix element with at 
least one reference determinant. The set of interacting q-determinants is a subset 
of  the union of single and double excitations from all p-determinants.  The 
noninteracting q-determinants are: (i) Single and double excitations that due to 
symmetry have vanishing matrix elements with all the p-determinants.  (ii) Triple 
and higher excitations with respect to any reference determinant. A perturbation 
calculation to third order involves only the interacting q-determinants. The entire 
Hamiltonian matrix is therefore the same as in MRS SDCI. Here however, it 
remains undiagonalized and is only used to construct the smaller matrices of the 
approximate RS effective Hamiltonians. This construction is the heart of the 
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perturbation calculation as the diagonalization of the effective Hamiltonians is 
a simple matter. Note that by avoiding the diagonalization of the full SDCI 
matrix the size-consistency error'is eliminated [6, 7]. 

To third order in V the RS effective Hamiltonians H i s  are [9] 
1 H a s  = P H P  = P H ~  + PVP, (1) 

H 2 s  = P H P  + P V G  ~ VP, (2) 

H3os = P H P  + P V G  ~ VP + P V G  ~ VG ~ VP - PV[  G~ 2 V P ( H  - E~ (3) 

where 

G O = [E ~  H~ - '  Q, (4) 

and E ~ (the reference energy) is the zeroth-order energy of the reference deter- 
minant that energy-wise is the most isolated from q-space. 

To compute H3s three dim ( p ) x d i m  (p) hermitian matrices are required: 
PVG~ P V G ~ 1 7 6  and PV[G~ The calculation of these matrices may 
be organized by columns where taking advantage of hermiticity, one element is 
to be computed from the first, two from the second, etc. Exploiting molecular 
symmetry a further reduction of computations is achieved, as only symmetry-wise 
unique elements are needed to construct the effective Hamiltonians. In any case, 
the number of elements to be computed scales quadratically with the size of the 
reference space. Because the nature of the PES problem dictates using extended 
reference spaces, the computation may quickly run out of hands. An important 
asset of the method is that it allows other means of reducing computing sources 
on a physical basis. Namely, the truncation of q-space [10]. 

The initial step is to obtain the nonzero elements of the rectangular matrix P V Q  

in full. They are stored by rows along with labels identifying the excitation from 
the p-determinant of the row. Given the orbitals occupied in the p-determinant, 
an excitation label uniquely defines a q-determinant. Even with large basis sets, 
the construction of the P V Q  matrix is relatively fast and easy. Thus, this step 
can be repeated with each column if storage capacity is low. 

The hard and time-consuming task is computing the columns of the third-order 
matrix PVG~176 it is equivalent to building an MRS SDCI matrix. The 
columns of  the second-order matrices P V G  ~ VP and PV[  G~ 2 VP can be computed 
jointly with the identical columns of the third-order matrix. All the information 
needed to compute a second-order matrix element is also required in the computa- 
tion of the same element in third order. A joint calculation can therefore be 
performed at negligible increase in time and with no additional storage require- 
ments. Note that because the calculation is organized by columns, and since each 
column is computed independently, it is also possible to process columns in 
parallel. This could be arranged within the same run if a parallel processor is 
available, or alternatively in separate runs. 

Consider therefore the column cr for which the diagonal and c~ - 1 elements are 
to be computed. The first stage is to construct the row a of the second-order 
rectangular matrix P V G  ~ VQ. Actually, for the third-order elements only a part 
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of the row is needed. This part is the set of nonvanishing second-order interactions 
between the p-determinant ~ and all the single and double excitations out of 
it. Basically, the q-subspace here is the same as the one corresponding to the 
nonvanishing elements of the row a in the first-order matrix PVQ. There are 
some additional q-determinants though, which due to symmetry have a vanishing 
interaction with dp~ in the first order, but not in the second. The formula for the 
second-order interaction of ~ with a q-determinant ~j is 

<oo I VG~ vl*j> = <*o I vl*i>[  ~  E,] l((I)i ]V]Oj), (5) 
icq 

where Ei is the zeroth-order energy of Oi. In practice, the summation in the 
equation above runs only over the set of single and double excitations out of ~ 
having a nonzero perturbation matrix element with it. This computed set of 
second-order interactions should be stored along with excitation labels identifying 
the q-determinants. The computation described here is clearly very similar to 
building an SDCI matrix and thus can be performed efficiently using unitary- 
group [11-13], or other algorithms [14, 15] for the construction of long con- 
figuration expansions. Our approach is based on diagrammatic many-body 
techniques [2]. 

Basically, there are three tasks in the calculation: (i) Creating a list of (i.e. 
identifying) the nonvanishing QVQ matrix elements according to the excitation 
labels of the row c~ in the PVQ and PVG ~ VQ matrices. (ii) Sorting the two-electron 
integrals and computing the nonzero QVQ matrix elements. (iii) Computing the 
second order interactions according to (5). Proceeding straightforward in this 
order is not recommended on grounds of efficiency. The reason is that part (ii) 
is rather time consuming to perform. Also the list of nonvanishing QVQ elements 
is generally huge. For example, in a calculation performed on the ground-state 
determinant of Li2 with 9863 single and double excitations, -4 .6  million nonzero 
elements were obtained in the lower triangular half of QVQ. Evidently it means 
that by calculating the list (i) first, one must scan the two-electron integrals many 
times because of storage limitations. A more sensible way to go is to unite steps 
(i) to (iii). That is, scanning once the two-electron integrals and adding them 
directly to the proper elements of the second-order row according to formula 
(5). This procedure requires identifying the QVQ matrix elements to which every 
two-electron integral contributes to (in many cases more than one). Only elements 
between the q-determinants in row a of PVQ and PVG~ appear in (5). We 
employ diagrammatic-like techniques [2] to subdivide the sort of the labels of 
row a which identifies the QVQ elements. It is this part of the computation of 
diagonal elements that a truncation of q-space is most helpful for, since it reduces 
the number of elements in the row c~. Lastly, we mention that although the present 
algorithm seems efficiently organized, it is not unlikely that on applying the 
unitary group method [ 11-13], or other techniques of wave function construction 
[14, 15] a faster computation of diagonal elements will result. 

After row c~ of the second-order interaction matrix is obtained, the computation 
of the third-order diagonal element is as trivial as the second-order one. The 
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corresponding formula is 

(~ , [  VG~176 = • (~ , [  V[~i)[E ~  E~]-~(~i[ VG~ (6) 
icq  

A simultaneous computation of the second- and third-order elements is carried 
out as follows: Each element in row a of PVQ is first divided by its corresponding 
energy-difference denominator (see (6)). Then a scalar product of the resulting 
array with the row a of PVQ and PVG ~ VQ is performed to give, respectively, 
the diagonal second- and third-order elements. The array containing the elements 
of the row a of PVQ divided by their energy denominators, should be stored for 
subsequent computations of the a - 1 off-diagonal elements of column a. This 
phase of the calculation is discussed below. 

The set of single and double excitations from the p-determinant ~r (a #/3)  is 
in general different from that of ~ , .  This means that it includes triples, quadruples, 
and possibly higher excitations with respect to the latter. The first step is therefore 
to classify the singles and doubles appearing in the list for p-determinant ~ 
according to their excitation level with respect to q~. Excitations higher than 
quadruple are discarded as they cannot participate in the expansion below fourth 
order. Those excitations classified as singles and doubles contribute to the off- 
diagonal elements already in second order. Their contribution in second and 
third order, equals the scalar product of the first-order interactions (divided by 
energy denominators) of q~t~ with the first- and second-order interactions of the 
p-determinant q~,  respectively. 

The second-order interactions connecting ~ ,  to a triple excitation from it are 
topologically divided into linked and unlinked. The quadruples are connected 
to q~, only via unlinked interactions. To compute a second-order unlinked 
interaction is relatively simple, since any such interaction consists of a product 
of two matrix elements from the row a of PVQ divided by an energy denominator. 
Some superfluous (exclusion-principle-violating [1, 2]) terms enter the expansion 
through products leading to triple excitations. They cancel out however, by similar 
superfluous terms coming from the linked interactions [2]. Obtaining the linked 
triple-excitation terms is the difficult phase in the calculation of the off-diagonal 
elements. The procedure is simlar to that employed for computing the diagonal 
third-order terms. The two-electron integrals are scanned one by one, and a 
diagrammatic algorithm (the same as in the diagonal case) determines those 
which connect, in a linked fashion, a (triple) element in the row/3 of the PVQ 
matrix with an element in the row a. Every time such a linked interaction is 
spotted it is multiplied by the corresponding product of PVQ elements from rows 
a and /3 divided by the proper energy terms, and the result is added to 
(%lV ~ 
The entire calculation of the linked triple terms in an off-diagonal element is 
roughly between 25% to 40% of the calculation time for a third-order diagonal 
element. This estimation is based on the fraction (obtained in trial calculations) 
of elements in one row of PVQ, which correspond to triple excitations with 
respect to the p-determinant of another row. This effort in itself would not seem 
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tOO demanding, except that in an MRS perturbation calculation one anticipates 
many off-diagonal elements. Moreover, as their number increases quadratically 
with the dimensionality of the reference space, computing the off-diagonal ele- 
ments is expected to become the major task when expanded reference spaces are 
employed. 

At this point it seems appropriate to invoke parallel processing; preferably in 
the same run. Because the computation of all the off-diagonal terms other than 
the linked triple excitations is relatively easy, they can be processed sequentially 
element by element. From each element the labels and the PVQ elements of triple 
excitations with respect to the p-determinant labelling the column (i.e. ~ )  are 
stored in the computer core. After the allotted storage is exhausted we then 
proceed to compute the linked triple terms contributing to different off-diagonal 
elements in parallel. Batches of two-electron integrals are loaded into core one 
by one. Each batch is then processed in parallel for all the off-diagonal elements 
now stored in core :memory. The procedure for each element was described in 
the previous paragraph. This is repeated until all two-electron integrals have been 
scanned. This type of parallel processing would greatly reduce the overall CPU 
and real times of the off-diagonal phase of the computation. Actually the present 
code is organized precisely as described above, except that instead of parallel 
processing, the stored off-diagonal elements are treated sequentially. Thus, 
parallel computations can be performed with just minor modifications. 

Once the matrices PVG~ PVG ~ VG~ and PV[G~ are obtained, it is 
straightforward to compute H2s and H3s using formulae (2) and (3). Observe 
that H3s is inherently nonhermitian even though it is constructed solely from 
hermitian matrices. This is because the product matrix PV[G~176  
will not be symmetric when the reference space is not exactly degenerate. Only 
when it is, will H i s  be an hermitian matrix. 

We wish to remark that although diagrammatic notions are extensively used in 
the computation, the present MRS formalism is not a many-body theory in the 
conventional sense. Technically this is emphasized in that the summations are 
performed over determinants rather than orbitals as in diagrammatic perturbation 
theory [1, 2]. The many-body and the MRS formalisms are both RS theories, and 
the difference in the summation rule stems from the definition of the reference 
energy. To see this we must first mention that quasidegenerate RS theory may 
be formulated by employing [2] dim (p) reference energies instead of one as was 
done here. These are the dim (p) zeroth-order energies of all p-determinants. 
The RS series with dim (p) reference energies is obtained from that with one E ~ 
via an infinite-order summation of a degeneracy-lifting perturbation V1 acting 
only in the reference., space [2], 

V, = P ( H  ~ - E~ (7) 

This transformation affects the convergence properties, as well as the diagram- 
matic representation, of the quasidegenerate RS series. 

On using first-order Feynmann graphs to describe two-electron integrals, it is 
possible to represent the terms appearing in the many-electron RS series by 
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diagrammatic symbols. These diagrams are classified as either linked or unlinked. 
If the reference space is complete, i.e. it contains determinants corresponding to 
all possible occupations of the valence orbitals, then it can be shown by applying 
the factorization theorem [16], that the unlinked diagrams in a multi-reference- 
energy series mutually cancel at every order [1, 2]. The diagrammatic representa- 
tion of the multi-reference-energy RS series is therefore linked for a complete 
reference space [2]. In this version of the RS series, usually referred to as 
many-body perturbation theory, summation over q-determinants is replaced by 
summation over orbitals through the use of linked diagrams. In contrast, the 
diagrammatic expansion, obtained using a single reference energy for a complete 
nondegenerate reference space, may include unlinked diagrams. The reason is 
that under these conditions the factorization theorem [16] may not always hold. 
Both linked and unlinked diagrams enter the single-reference-energy RS series 
for a quasidegenerate reference space. Clearly, in this case there is no practical 
advantgage in replacing the summation over q-determinants by summation over 
orbitals. 

It may seem that since the quasidegenerate single-reference-energy RS series 
contains unlinked terms, it is not a size-consistent expansion. This is definitely 
not the case, and the single-reference-energy RS series is order-by-order a proper 
size-consistent expansion. We can argue for this statement in two ways. First, 
one might say that it comes about by definition, since, in every order the expansion 
includes all the unlinked terms, which would have mutually cancelled out if the 
reference-space degeneracy-lifting terms were summed to infinite order. Observe 
that problems of size-consistency arise precisely when terms of given order are 
missing from the expansion. For example, a detailed analysis of the SDCI result 
in terms of the RS series [6, 7], shows that fourth- and higher-order unlinked 
terms involving quadruple and triple excitations are absent from the expansion, 
whereas the analogous terms involving singles and doubles are summed to infinite 
order (upon diagonalization). This is clearly not the case with the single-reference- 
energy MRS series which in every order contains all the RS terms (linked and 
unlinked). It is thus a size-consistent expansion. We arrive at the same conclusion 
also from the following argument. The degeneracy-lifting operator is manifestly 
a one-electron operator. Choosing E ~ to be the zeroth-order energy of a reference 
determinant, say ~0, V1 can always be written as 

vl = E (~ i -  ~j)ckj. (8) 
icp 
jeO 

Here c~(ci) is the creation (annihilation) operator of an electron in orbital ~bi of 
energy si; the index i runs over the orbitals occupied in the reference space, 
while j is restricted to the orbitals of 4P0. Hence, the transformation from the 
single-reference-energy series to the linked expansion and vice versa, is essentially 
equivalent to redefining the orbitals. Such a transformation cannot introduce (or 
eliminate) a size-consistency error. If the linked expansion is size-consistent so 
must be the single-reference-energy series. 

We now turn to compare the convergence of the two forms of the quasidegenerate 
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MRS series. Summing the degeneracy-lifting terms to infinite order, brings about 
the exact cancellation of unlinked terms. However, this may be at the expense 
of acute problems of divergence. It often happens that the fully linked expansion 
is divergent because one of the reference determinants is nearly degenerate with 
a q-determinant called an intruder [17]. There is no physical reason for the latter 
to be a reference determinant, so that including it in the reference space un- 
necessarily complicates the calculation. It also may not solve the problem 
altogether, because the number of such intruders tends to increase on expanding 
the reference space [9]. As is readily seen, this intruder situation is easily 
circumvented by using a single reference energy. Simply choose E ~ to be the 
most isolated zeroth-order eigenvalue amongst the reference space. In short, the 
single-reference-energy series generally converges better than the linked 
expansion which has dim (p) reference energies. 

Another important advantage of the single-reference-energy series is that it leads 
to efficient computations. Observe that the three matrices: P V G  ~ VP, P V G  ~ VG ~ VP 
and PV[  G~ are no longer hermitian in the multi-reference-energy formula- 
tion. In this case all the dim (p) x dim (p) elements of each matrix have to be 
computed separately. This means roughly a factor of two in the computational 
effort as compared with a single-reference-energy computation. This holds true 
even when diagrams are used, i.e. summation over orbirtals rather than deter- 
minants. Furthermore, the fact that the summation unit is q-determinants allows 
for truncation schemes based on the wave function, which would enhance compu- 
tations without loss of accuracy [10]. When summing over orbitals truncations 
are more complicated, since orbitals do not directly relate to the many-electron 
wave function. 

3. Defining the reference space 

The main ingredient in the MRS perturbation calculation is the reference space. 
The basic idea is to improve the results in third (or fourth) order, by expanding 
the reference space and including the important configurations in the wave 
function. In many cases it is possible to recognize the relevant configurations on 
simple physical grounds. Usually there are few such dominant configurations 
over the interesting range of molecular geometries. Unfortunately, it is also a 
rule of experience that with small "physical" reference spaces a significant part 
of the molecular correlation energy is unaccounted for in third-order calculations 
[9]. The reason is that on-the average, small "physical" reference spaces constitute 
about 95% of the electronic wave function and in many cases even less. In Li2 
for example, the configuration lo~1O-2u2~r~ is only - 9 0 %  by weight of the ground 
state at the equilibrium distance. Now, as the total correlation energy is rather 
large compared with its variation due to molecular formation (molecular correla- 
tion energy), then leaving out a configuration of 0.5% weight may lead to 
significant loss in PES accuracy. In short, in order to define the reference space 
one must have the ability to estimate the weights of configurations in the wave 
function of interest. That means computing some reliable (but simple to get) 
approximations; such as the first-order RS wave function [5]. 
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n r l  Given an eigenvalue /?n and an eigenvector 'Irp of HRs, the nth-order RS wave 
function is obtained via the wave operator transformation [18] acting on ~ 

�9 ~ = ~ + [ E  ~ - Q H Q ] - ' Q V ' I r ~  = ~ { [ E "  - H ~  - '  QV}'~e~. (9) 
i =O 

For properties other than the energy, this expansion is rather well convergent. A 
reasonable estimation for the weight of given configuration directly interacting 
with the reference space, may therefore be gotten from the first-order wave 
function [5], 

,u = , I~  + [ E '  - H ~  - '  0 V ~  g. ( I0 )  

Experience from CI calculations [5], and perturbation studies on two-electron 
systems [9], indicate that the first-order wave function in the Epstein-Nesbet 
[19] (EN) breakup of the Hamiltonian matrix, is a more reliable approximation 
than that obtained in the Mr [20] (MP) scheme. The procedure is 
therefore as follows: First one should determine the obvious configurations in 
the desired wave functions over the relevant range of molecular geometries. The 
EN first-order wave functions (10) are then computed for the obvious reference 
space, and the weights of the q-configurations are inspected. Some numerical 
criterion should be established to distinguish the important q-configurations. In 
H2 [9] 0.005 weight was sufficient whereas in Li2, with a larger correlation energy, 
the cutoff was reduced to 0.002. The q-configurations passing the weight test 
should become reference configurations. Physical reasoning must be employed 
here as well. It often happens that q-configurations with occupied high positive- 
energy virtuals, attain a relatively large weight due to the finiteness of the basis. 
Such q-configurations do not describe bound molecular states, and therefore 
should not become reference configurations [9]. 

As the molecular geometry is varied, the procedure just described yields the set 
of configurations that are important for the computation of the entire PES. If  
this set is small then it is possible to use it as single reference space for the whole 
PES. A more frequent scenario would however be that a definite computational 
advantage is gained on discarding the unimportant configurations at every 
geometry. This should be done cautiously, not to affect the shape of the PES 
(say causing it to be bumpy). The configurations moving back to the q-space 
must have at the specified geometry, a negligible contribution to the first-order 
wave function as well as the energy. Removing a p-determinant that is unimportant 
in the first-order wave function, but which has a significant interaction with the 
reference space, is likely to introduce an undesired deformation to the PES. This 
is because a third-order calculation may never recover the interaction, that is 
fully accounted for in first-order with the removed p-determinant. 

4. Numerical selection of q-determinants 

The number of operations in the construction of any H i s  grows quadratically 
along with the expansion of the reference space. Simultaneously the number of 
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q-determinants increases with every added reference determinant. Clearly, not 
all q-determinants are important in the wave function of interest, and many have 
only a negligible influence on the third-order energy; and as such on any higher- 
order result. It would therefore make sense to eliminate these "numerically 
superfluous" q-determinants, thereby reducing the computational effort. A similar 
procedure is being successfully employed in MRS SDCI calculations [10]. Writing 
the third-order energy as follows 

E 3 = g ( 'gl VlO,>rE ~  E,]-I(O,I VG~ (11) 
iEq 

one sees that if ( ~ [  V[O,)[E ~  G]  -1 is small, then the contribution of  ap, may 
be neglected. The reason is that in a well defined reference space, when conver- 
gence is granted, <q, glvlo,> is bigger in magnitude than the second-order 

3 interaction (O,] VG~ Now ~ - ~ p  when the reference space includes all 
the important configurations [5]. Thus, on inspecting the coefficients fi,, 

/3, = (,xp] VIO,)[E o_ E,]-', (12) 

it is possible to assess which q-determinants can be eliminated from the calcula- 
tion, without significantly altering the overall third-order result. Of course the 
selection process requires an a priori cutoff criterion,/3m~n, which may be estimated 
from trial calculations. The procedure is therefore as follows: First the reference 
space is selected according to the guidelines given in Sect. 3. Then the coefficients 
/3i are computed and those that in absolute value are less than the cutoff /3m~n 
are singled out. The corresponding elements in the PVQ matrix are eliminated. 
The perturbation calculation then proceeds with the trimmed PVQ matrix. 

To demonstrate the method, calculations were performed on Li: using a 
[10s, 5p, l d ]  gaussian basis set which was contracted to give 52 molecular orbitals 
in all. The basis consists of Huzinaga's [21] [9s, 4p] set and additional s, p, and 
d functions with exponents: 8.13 x 10 -3, 5.11 x 10 -3, and 1.25 x 10 1 respectively. 
The five innermost s functions were contracted to one with the atomic coefficients 
given by Dunning [2:2]. This basis set is reasonably suitable for the ground state, 
and presumably (with reduced accuracy) for tow excited states. The orbitals were 
solved in the Silverstone-Yin [23] mean-field potential. In this case the orbitals 
occupied in the ground-state determinant (i.e., l~g, lo-u and 2crg) are the exact 
closed-shell HF solution whereas the virtuals resemble the orbitals of the excited 
molecule. 

The reference space in the perturbation calculations reported here comprised in 
all 21 Slater determinants. The corresponding configurations are given in Table 
1. This reference space constitutes - 9 8 %  by weight of  the first-order ground-state 

1 + wave function at 5.0 and 17.0 bohr, and more than 95% of the first excited Z~ 
and 3 + 1 5~g functions. Observe that the first-order weights are quite similar to the 
exact frozen-core weights (Table 1) obtained from a valence CI with all the 
excitations out of the 2o-~ orbital. This supports the credibility of the first-order 
wave function as means to identify the important configurations. Table 2 gives 
the RS series to third order (including the [2/1] approximant) in the EN [19] 
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Table 1. Reference configurations and their weights ~ in the ground- 
state valence CI ( q ~  and first-order EN (~1) wave functions 

R = 5.0 bohr  R = 17.0 bohr  

Configuration b I ~ 1  = 1.11 = I*~1 = I~ll 2 

2o- 2 0.905 0.885 0.469 0.476 
3o -2 0.007 0.008 
20-2 0.009 0.010 0.469 0.471 
17r~, u 0.023 0.029 
1 ~'~2, u 0.023 0.029 
2o-~3o-~ 0.013 0.012 
2o-~4o-~ 0.019 0.015 
2o-lu3o-~ 
2o-~4o-~ 0.010 0.007 

1 1 1 ~rx,~2rrx,. 0.003 0.003 
1 ~-~,,27r~,~ 0.004 0.004 

1 1 1 ~':,,u3 ~'x,~ 0.003 0.003 
1~'),,. 3~'1y ~, 0.004 0.004 
Total 0.981 0.975 0.980 0.981 

"The  weight of  a configuration is the sum of the weights of  the 
correspondig determinants.  Weights less than 0.002 are not shown 
b Core occupancy in all configurations is lO-glo- u 2  2 

Table 2. Electronic energies a obtained from the RS series with the 
full q-space determined by the reference space of Table 1 

1 +  3 +  1 +  X s  1 s  2 s  

R = 5.0 bohr 
MP 1 -16.693711 -16.611536 
MP 2 -16.756165 -16.673195 
MP3 -16.757372 -16.679642 
MP[z/H -16.757396 -16.680396 
EN2 -16.756497 -16.673573 
EN 3 -16.758128 -16.679702 
EN[2/13 -16.758171 -16.680374 

R =  17.0 bohr 
MP 1 -15.390247 -15.318521 
MP2 -15.444812 -15.375266 
MP 3 -15.449700 -15.383547 
MPc2/I 3 -15.450181 -15.384962 
EN 2 -15.446536 -15.376686 
EN3 -15.450069 -15.383783 
ENE2/1 ] -15.450306 -15.384769 

-16.587394 
-16.652163 
-16.657196 
-16.657621 
-16.652627 
-16.657262 
-16.657617 

-15.313676 
-15.371438 
-15.378881 
-15.379983 
-15.372803 
-15.379172 
-15.379941 

a In hartree 
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and MP [20] breakups of the Hamiltonian matrix, at the internuclear separations 
5.0 and 17.0 bohr. In Table 3 the differences A~ 7 between the Born-Oppenheimer 
energies at 17.0 and 5.0 bohr are compared with the valence CI results and the 
accurate computations of Schmidt-Mink et al. [24]. For the ground state AI7 
should be a good approximation to the dissociation energy De. 

The electronic energies shown in Table 2 were obtained from a full third-order 
calculation involving all the six electrons. With the basis set used, the maximum 
number of single and double excitations from a reference determinant is 4421. 
The total number of q-determinants entering the calculation is 57 169. These are 
classified as valence, core, and valence-core excitations. Note that on the average, 
each p-determinant contributes -2700  distinct excitations. This means that 
numerous triple and quadruple excitations are introduced on expanding the 
reference space. This is of course only a small portion of the triple and quadruple 
sets, notwithstanding the important ones. 

The contribution of core-core double excitations to the total correlation energy 
is roughly two thirds. In particular it has a pronounced effect in second order. 
Consequently the third-order corrections are rather small as compared with the 
second-order term (-~ 1/60 for the ground state). Also, the [2/1] Pride approximant 
is hardly any improvement over the third-order result. This is manifested in the 
dissociation energies which are better in third order (Table 3). The effect of large 
core correlations appears also in the discrepancy between the third-order EN 
and MP ground-state energies at 5.0 bohr. Presumably, the corresponding MP 
expansion is slower convergent because of the large diagonal core terms. This 
discrepancy widens when the reference space is reduced in size. Also, the ground- 
state De becomes smaller and further away from the experiment. The core 
correlations are better accounted for in a larger space where more triple and 
quadruple excitations effectively enter the computation. Notice that, as expected, 
the excited-state series are less sensitive to the core correlations. The discrepancies 
between the third-order EN and MP energies are smaller than for the ground 
state, and the corresponding A~7's are closer to those reported by Schmidt-Mink 
et al. [24]. 

Table 3. Differences in Born-Oppenheimer energies ~ (A~ 7) 

Source X l~x~ 1 3~g 2 l s  

MP 1 0.03288 0.02243 0.00313 
MP 2 0.04076 0.02734 0.01014 
MP3 0.03708 0.02551 0.00773 
MPEE/13 0.03661 0.02485 0.00705 
EN2 0.03937 0.02630 0.00924 
EN3 0.03747 0.02533 0.00750 
EN~z/a 3 0.03728 0.02502 0.00709 
valence CI 0.03720 0.02439 0.00563 
Ref. [24] 0.03848 0.02617 0.00791 

a In hartree 
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Table 4. Number of  excitations in truncated q-spaces a 

Breakup ]~min = 10 8 •min = 10-9 ]~min = 10-10 

R = 5.0 bohr 
M P  7595 16608 30479 

E N  7579 16147 29885 

R = 17.0 bohr 
MP 5563 10696 16225 

E N  5589 10584 16103 

a The full q-space consists of  57169 determinants 

T~/ble 5. The deviation a of  the ground-state electronic energy 
obtained with truncated q-spaces from the full q-space limits given 
in Table 2 

/3rain: 10 S 10-9 10-10 

R = 5.0 bohr 
M P  2 0.000217 0.000035 0.000003 

M P  3 0.000253 0.000037 0.000001 

E N  2 0.000207 0.000034 0.000003 

E N  3 0.000249 0.000039 0.000001 

R = 17.0 bohr 
MP2 0.000154 0.000018 0.000003 

MP 3 0.000203 0.000027 0.000002 

E N  2 0.000147 0.000018 0.000002 

E N  3 0.000195 0.000027 0.000002 

a In hartree. All deviations are positive 

The majority of  the excitations into q-space are valence-core or core type. 
Interestingly, the result for the ground-state De obtained in valence CI with much 
less excitations, is only slightly less than the full-core third-order EN result. In 
Li2 the overall contribution of  core correlations to De is known to be rather small 
[24, 25]; ranging between 200 to 400 cm i depending on the mean-field model.  
Apparently it is less than the size-consistency error, and thus the full-core SDCI 
dissociation energy is smaller than the valence CI value in the same basis set 
[26]. With the Davidson correction [6] the full-core result is near the frozen-core 
limit. In the expanded reference space used, the third-order perturbation calcula- 
tion gives directly a De comparable to the valence CI result. This is because 
perturbation theory is inherently a size-consistent method. 

Table 4 compares the q-spaces obtained by applying different cutoff criteria on 
the /3i's computed for the ground state. Tables 5 and 6 depict the errors in the 
electronic energies of  the ground and excited triplet states computed with these 
truncated q-spaces. The errors are measured relative to the full q-space energies 
in Table 2. Note  that they are always positive indicating that the full q-space 
values are likely upper bounds. 
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Table 6. S a m e  as T a b l e  5 b u t  fo r  the  lowes t - t r ip le t  s ta te  

~min; 10 -8 10 -9 10 -1o 

R = 5.0 b o h r  

M P  2 0 .012124 0 .003245 0 .000359 

M P  3 0 .013568 0 .003643 0 .000419 

E N  2 0 .012074 0 .003139 0.000388 

E N  3 0 .013559 0 .003602 0.000471 

R = 17.0 b o h r  

M P  2 0 .006476 0.001933 0 .000394 

M P  3 0 .007926 0.002531 0.000553 

E N  2 0 .006495 0.001945 0 .000388 

E N  3 0 .007909 0 .002527 0 .000547 
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For the ground state, the q-space obtained with ]~min = 1 0 - 9  is already sufficiently 
large to ensure that the third-order energy is as accurate as the full q-space result 
for all intents and purposes. Even with/3rain = 10 -8 the ground state De is hardly 
altered. This is because the truncation errors at 5.0 and 17.0 bohr are both positive 
and of roughly the same magnitude. The situation is worse for the excited triplet 
state (Table 6). But this is not surprising because the truncation is based on the 
first-order ground-state wave function. I f  instead the excited-state function was 
used, the situation would have been reversed. It is possible to employ two (or 
more) functions in the truncation scheme. This would yield a truncated q-space 
suitable for accurate computations for several states. Of course this truncated 
q-space would be larger, but not by much. This can be seen from the fact that 
with /3min = 10 -l~ the results for the lowest triplet state are already reasonable 
(Table 6). Nevertheless, a /3min = 10 -l~ ground-state based truncation is not the 
optimal situation for the excited state. A two-state truncation scheme, with 
/3mi n = 1 0  - 9  say, would conceivably produce a smaller q-space than the/3mi~ = 10 -l~ 
ground-state truncation while retaining high accuracy for both states. 

The important  achievement of  the q-space truncation scheme is the savings gained 
in computing effort (Table 5). Observe that with a full q-space the symmetry- 
reduced perturbation calculation amounts to the construction of 28 complete 
SDCI matrices. Ten from the unique diagonal elements, and 18 estimated as the 
equivalent of  75 distinct off-diagonal ones. Now on using the q-space truncated 
at the/3min = 10 9 level, there is an immediate gain of  factor five in many operations 
with practically the same results. Under balanced numerical truncation of the 
q-space, the perturbation calculation can evidently be performed for large 
reference spaces at reasonable cost and sufficient accuracy. 

5. Summary 

We have discussed the implementation of multi-reference-state perturbation 
theory for the evaluation of potential-energy surfaces. The motivation for doing 
so is that perturbation theory is inherently a size-consistent method and as such 
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particularly suitable for this purpose. The reference space is a degree of freedom 
of the theory that gives it the capacity to yield highly accurate surfaces. An 
organization of the computation to third-order has been presented along with a 
brief description of the algorithms. Although it is clear that the present codes 
could be improved on, by invoking parallel processing, and perhaps on using 
the unitary group [11-13] and other approaches [14, 15], it is also clear that the 
method is a practical one. An important advantage of the theory is the ability to 
truncate the determinant space wisely, gaining large savings in computer sources 
but without sacrificing the accuracy of the surface. 
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